Real Video Transformer

Science & technology : Cara Kerja Binntang

Sunday, July 6, 2008 · 0 comments

Science & technology : Cara Kerja Binntang

URL : http://scienctechnology-sg.blogspot.com/

Gravitasi dan Tekanan Gas

Tiga orang astronom, Carl Hansen, Steven Kawaler, dan Virginia Trimble, dalam buku teks terbaru mereka tentang struktur bintang, berjudul Stellar Interiors: Physical Principles, Structure, and Evolution (Interior Bintang: Prinsip Fisis, Struktur, dan Evolusi), menulis, “Jika Anda ingin tahu bagaimana bintang bekerja, pergilah keluar dan lihatlah mereka selama beberapa malam. Apa yang mereka lakukan hanyalah bersinar dengan stabil sepanjang waktu.” Secara historis ini betul. Mari kita lihat Matahari sebagai contoh. Penemuan-penemuan fosil menunjukkan bahwa kehidupan di Bumi sudah ada paling tidak semenjak 3 milyar tahun lalu. Studi tentang kandungan kimiawi pohon-pohon tertua dan fosil-fosil tersebut juga menunjukkan bahwa Bumi tidak mengalami perubahan besar yang disebabkan oleh ketidakstabilan matahari. Apa yang dilakukan matahari kita “hanyalah” bersinar begitu lama!

Sinar matahari yang kita nikmati sekarang sama dengan sinar matahari yang dinikmati nenek moyang kita di zaman dahulu, bahkan sama pula dengan yang dinikmati dinosaurus puluhan juta tahun lalu. Dalam rentang waktu jutaan tahun, matahari relatif stabil. Tentu timbul pertanyaan: kenapa matahari bisa begitu stabil? Pertama-tama, mari kita coba hitung massa matahari. Kita sekarang tahu bahwa jarak Bumi kita ke Matahari adalah 150 juta km, sementara waktu yang dibutuhkan Bumi untuk mengelilingi Matahari adalah 1 tahun yaitu 365.25 hari. Anggap saja Bumi mengelilingi matahari dalam orbit berbentuk lingkaran, sehingga kecepatan Bumi mengelilingi matahari adalah 100 000 km/jam.

Karena kita tahu bahwa gerakan Bumi berasal dari tarikan gravitasi Matahari, maka dapat kita simpulkan dari Hukum Gravitasi bahwa gaya gravitasi Matahari dihasilkan oleh massa sebesar 2 x 10^30 kg! Ini kira-kira sama dengan 330 000 kali massa Bumi.
Kenapa massa yang begitu besar ini tidak runtuh ke pusatnya? Sebuah gedung tinggi punya massa besar dan tetap berdiri karena ada pilar-pilar kerangka yang menopang seluruh massa gedung. Namun bila pilar-pilar ini diledakkan oleh pakar peruntuh gedung, seluruh bangunan akan runtuh secara bersamaan ke bawah, ke arah pusat Bumi. Demikian pula dengan matahari, bila tidak ada “sesuatu” yang menopang seluruh massa tersebut, maka matahari akan runtuh ke arah pusatnya dalam waktu kurang dari setengah jam! Karena kita tidak pernah melihat hal itu terjadi, berarti ada sesuatu yang menopang struktur matahari.
Kita anggap saja bahwa Matahari adalah sebuah bola gas yang berpijar. Bila hal itu betul, kita dapat anggap gas di dalam matahari sebagai sebuah gas ideal yang memancarkan radiasi elektromagnetik. Hukum Gas ideal mengatakan bahwa gas yang dimampatkan akan menghasilkan tekanan yang melawan pemampatan itu. Bila gas tersebut memancarkan radiasi elektromagnetik, maka Matahari juga menghasilkan tekanan radiasi yang arahnya ke luar permukaan matahari.
Lapisan yang lebih dalam mengalami tekanan gravitasi yang lebih besar, oleh karena itu untuk mengimbanginya tekanan radiasi juga harus sama besarnya.

Bila suhu di pusat matahari kita ketahui dengan pemodelan teoritik, maka suhu di permukaan matahari kita ketahui melalui pengamatan. Apabila kita melewatkan sinar matahari pada prisma, maka kita akan melihat bahwa sinar matahari yang berwarna putih tersebut akan terbagi-bagi menjadi sinar dengan berbagai warna, dari warna merah hingga warna ungu. Warna-warna yang berbeda ini adalah tanda bahwa cahaya terbagi-bagi atas sinar dengan energi yang berbeda-beda. Artinya radiasi elektromagnetik merentang dari energi tinggi hingga energi rendah (sinar Gamma dan sinar-X adalah contoh radiasi energi tinggi, sementara sinar inframerah, gelombang Radio, dan gelombang mikro (microwave) adalah contoh radiasi energi rendah), dan radiasi yang kasat mata kita namakan sebagai cahaya.

Dengan spektroskopi kita dapat membagi cahaya menurut tingkat-tingkat energinya, dan menelaah sifat-sifat pembangkit cahaya tersebut.

Sumber radiasi elektromagnetik adalah sebuah pemancar sempurna yang kita namakan benda hitam. Lagi-lagi benda hitam, sebagaimana gas ideal, hanyalah objek khayal. Namun sifat-sifat radiatif matahari dapat didekati bila kita menganggap matahari sebagai sebuah benda hitam.

Benda hitam yang memancarkan energinya pada suhu tertentu akan memiliki kurva distribusi energi yang spesifik pada temperatur tersebut. Sumber: Wikipedia

Eksperimen menunjukkan bahwa sebuah benda hitam memancarkan energinya dalam bentuk radiasi elektromagnetik dan energinya dipancarkan pada seluruh panjang gelombang. Namun intensitas energi pada setiap panjang gelombang tidak sama, dan setiap benda hitam yang memiliki temperatur tertentu memiliki panjang gelombang di mana intensitas energinya paling tinggi. Semakin tinggi temperatur sebuah benda hitam, semakin pendek panjang gelombang di mana energi paling tinggi memancar (lihat gambar kurva benda hitam). Dengan demikian, benda hitam yang memancarkan energinya pada suhu tertentu akan memiliki kurva intensitas energi yang unik. Untuk mengetahui bentuk kurva ini, kita dapat memecah cahaya pancaran benda hitam ini ke dalam spektrumnya masing-masing. Permukaan Matahari dapat kita anggap sebagai sebuah benda hitam, dan oleh karena itu bentuk sebaran energi matahari dapat didekati dengan kurva pancaran benda hitam. Dengan melakukan pengamatan spektroskopi pada matahari, kita dapat mengetahui seperti apa spektrum matahari dan dengan demikian dapat diketahui pula temperatur permukaannya yaitu 5800 Kelvin.
Pengamatan spektrum bintang-bintang lain ternyata menunjukkan perilaku yang sama: bintang juga merupakan sebuah benda hitam dan memancarkan radiasi elektromagnetik. Namun, temperatur permukaan bintang berbeda-beda. Ada yang lebih panas dari matahari, ada pula yang lebih dingin dari matahari. Walaupun demikian, semua bintang yang kita amati berlaku seperti sebuah benda hitam. Dari pengamatan spektrum matahari dan bintang-bintang lain inilah kita dapat menyimpulkan bahwa bintang-bintang yang kita amati di langit malam itu sebenarnya adalah matahari-matahari lain yang letaknya teramat sangat jauh sehingga sinarnya demikian redup bila dibandingkan dengan matahari yang lebih dekat. Karena sekarang kita sudah tahu bahwa bintang adalah objek yang sama dengan matahari kita, maka bintang-bintang lain pun dapat kita anggap pula sebagai sebuah bola gas yang berada dalam kesetimbangan hidrostatik. Apa yang kita ketahui tentang kesetimbangan matahari dapat kita terapkan pula pada bintang!


Sumber energi Bintang

Pada abad 19, dua orang fisikawan besar, Lord Kelvin dari Inggris dan Hermann von Helmholtz dari Jerman secara terpisah mencoba menjawab persoalan ini: Bagaimana jika energi matahari berasal dari pengerutannya? Anggaplah pada masa lalu ukuran matahari jauh lebih besar daripada ukurannya yang sekarang. Lalu perlahan-lahan, matahari mengerut karena tarikan gravitasi dari massanya. Pengerutan ini akan membebaskan energi potensial yang dapat diubah menjadi energi panas atau energi termal. Berapa energi potensial yang dibebaskan Matahari? Seandainya matahari di masa lalu memiliki jari-jari yang jauh besar daripada jari-jarinya yang sekarang, maka pengerutan Matahari telah membebaskan energi potensial sebesar 4 x 10^48 erg. Menurut teorema virial, bila sebuah sistem gravitasi (seperti Matahari) mengubah kesetimbangannya, maka setengah dari energi potensialnya akan diubah menjadi energi termal, sementara setengah lagi akan dipancarkan. Dengan demikian, energi yang dipancarkan matahari adalah 2 x 10^48 erg. Energi ini sangat besar, namun inikah sumber energi matahari?
Untuk menjawab pertanyaan ini, kita perlu mengetahui berapa energi yang dipancarkan matahari setiap detiknya. Ini dapat dihitung apabila kita, sekali lagi, mengandaikan matahari sebagai sebuah benda hitam sempurna yang berpijar. Dengan pengandaian ini, maka kurva sebaran energi sebuah benda hitam dapat kita gunakan untuk menghitung keluaran energi benda hitam tersebut di seluruh panjang gelombang, lalu menjumlahkan seluruh energi pada panjang gelombang yang berbeda-beda tersebut. Dari prosedur ini, kita akan memperoleh sebuah hukum yang bernama Hukum Stefan-Boltzmann, yang menyatakan bahwa total energi setiap detik yang dipancarkan dari setiap satuan area permukaan sebuah benda hitam ternyata hanya tergantung pada suhunya. Karena kita tahu berapa luas permukaan Matahari (anggap Matahari berbentuk bola dengan jari-jari 700.000 km) dan juga suhu permukaannya yaitu 5800 K, maka dapat dihitung total energi yang memancar dari seluruh permukaan Matahari pada saat ini adalah 3.8 x 10^33 erg setiap detiknya! Ini sama dengan 3.8 x 10^26 Watt. Bayangkan berapa jumlah rumah yang dapat diterangi oleh energi Matahari apabila setiap rumah membutuhkan daya 1000 Watt. Tentu saja energi ini memancar ke segala arah dan hanya 1400 Watt per meter persegi yang sampai ke Bumi.
Sekarang kita sudah tahu bahwa Matahari memancarkan energi 3.8 x 10^33 erg setiap detiknya, dan bahwa total energi yang dihasilkan dari pengerutan gravitasi adalah 2 x 10^48 erg. Andaikan selama ini matahari memancarkan energinya secara konstan dan tidak berubah, maka pengerutan gravitasi ini telah berlangsung selama kira-kira 17 juta tahun. Dari tanda-tanda kehidupan di Bumi, kita telah menyadari kehidupan telah berlangsung selama 3 milyar tahun, sementara pengerutan Kelvin-Helmholtz hanya sanggup menghasilkan energi yang sebanding dalam skala puluhan juta tahun. Jadi, harus ada sumber energi lain yang dapat menghasilkan energi dalam skala 10^33 erg selama milyaran tahun.
Penelitian Pierre dan Marie Curie menunjukkan fenomena radioaktivitas yang membebaskan energi dalam jumlah besar

Alternatif lain untuk menjawab problem ini adalah melalui fenomena radioaktif. Pada tahun 1896, Henri Becquerel menemukan fenomena radioaktivitas. Atom berat seperti Uranium memiliki sifat radioaktif, dan atom ini memancarkan energi berjumlah besar dalam bentuk radiasi. Mengapa bisa demikian? Tidak ada yang mengerti. Suami-istri Pierre dan Marie Curie-lah yang mencoba menjawab pertanyaan ini dan membayarnya dengan nyawa mereka. Interaksi keduanya dengan bahan-bahan radioaktif begitu dekat, dan pada waktu itu, bahaya radiasi nuklir belum disadari. Catatan-catatan riset mereka menjadi begitu bersifat radioaktif setelah bertahun-tahun terekspos radiasi Radium, sehingga sampai saat ini, catatan-catatan itu harus disimpan dalam kotak berlapis timah. Marie Curie meninggal akibat leukemia, setelah bertahun-tahun meneliti fenomena radioaktivitas dan bersentuhan dengan radiasi. Bagaimanapun, pengorbanan Pierre dan Marie yang bereksperimen di dalam laboratorium sempit mereka di Paris menunjukkan adanya sumber energi yang luar biasa besar di dalam atom.
Bagaimana sumber energi ini dapat dihasilkan? Tidak ada yang memahami apa yang sebenarnya terjadi di dalam atom. Pada akhir abad 19, para fisikawan membayangkan atom hanya seperti bola sederhana yang bermuatan positif dan di dalamnya elektron yang bermuatan negatif tersebar secara merata dan menetralisir muatan positif proton. Model seperti ini misalnya adalah model kue kismis J.J. Thomson. Namun struktur ini tidak mampu menjelaskan fenomena radioaktivitas. Percobaan-percobaan selanjutnya yang dilakukan Ernest Rutherford serta Hans Geiger dan Ernest Marsden menunjukkan bahwa seluruh proton dalam atom terkonsentrasi dalam nukleus/inti bermuatan positif, dan nukleus ini dikelilingi oleh elektron. Yang paling mengejutkan dari eksperimen Rutherford adalah bahwa diameter nukleus ini 100 000 kali lebih kecil daripada diameter atom. Bila kita bayangkan sebuah inti atom berukuran bola ping pong, maka elektronnya akan mengorbit inti atom tersebut sekitar 500 meter dari bola ping pong tersebut! Ini sangat luar biasa. Segala hal yang dapat kita raba, pegang, dan rasakan, ternyata tersusun atas … ruang kosong!

Inti atom yang terdiri atas Proton dan Neutron dikelilingi oleh Elektron dalam jumlah yang sama. Meskipun tidak terlalu akurat, namun model ini dapat menjelaskan fenomena radioaktivitas.

Elektron terikat oleh inti atom karena adanya gaya listrik tarik-menarik antara muatan negatif yang terkandung dalam elektron dengan inti yang bermuatan positif. Rutherford menunjukkan bahwa inti atom terdiri atas proton yang bermuatan positif, serta setiap atom memiliki jumlah proton dan elektron yang sama. Dengan demikian, jumlah muatan totalnya adalah nol dan dapat kita katakan bahwa atomnya bersifat netral. Di kemudian hari, murid Rutherford, James Chadwick, menemukan bahwa di dalam inti atom juga terdapat neutron yang tidak bermuatan.
Dengan adanya pemahaman tentang struktur atom ini, fisikawan mulai dapat memahami fenomena radioaktivitas yang ditemukan Becquerel, Pierre Curie, dan Marie Curie. Sebuah unsur bisa berubah menjadi unsur lain karena adanya perubahan jumlah proton dan elektron di dalam atomnya. Dalam setiap atom terkandung jumlah proton dan elektron yang spesifik hanya dimiliki oleh atom tersebut, dan bila proton dan elektron dipertukarkan, maka sebuah inti atom dapat berubah menjadi inti atom lain.
Peluruhan Radium menjadi Radon adalah fenomena radioaktivitas yang diamati Pierre dan Marie Curie. Radium meluruh menjadi Radon sambil memancarkan radiasi dalam bentuk partikel Alfa

Salah satu contoh adalah Radium yang dipelajari oleh Pierre dan Marie Curie. Radium memiliki 88 buah proton dan 138 neutron. Jumlah ini cukup besar dan cenderung tidak stabil serta dapat berubah menjadi unsur lain. Dalam hal Radium, 2 buah proton dan 2 buah neutron dapat dilepaskan sehingga ia berubah menjadi Radon yang memiliki 86 proton dan 136 neutron. Gabungan 2 proton dan 2 neutron ini disebut dengan partikel Alfa. Inilah radiasi yang perlahan-lahan membunuh Marie Curie. Reaksi pemecahan sebuah unsur besar menjadi unsur kecil ini disebut reaksi fisi dan merupakan mekanisme kerja di balik bom atom ataupun reaktor nuklir. Atom-atom berat seperti Radium relatif tak stabil dan akan melepaskan partikel alfa dengan sendirinya melalui fenomena yang disebut dengan peluruhan.
Mungkinkah reaksi sebaliknya , yaitu penggabungan 2 atom yang kecil, bisa menghasilkan energi? Hidrogen hanya memiliki 1 proton dan merupakan atom yang paling sederhana dari segi susunan proton dan elektronnya. Secara teoretis, penggabungan 2 atom Hidrogen menjadi Helium yang memiliki 2 proton adalah mungkin. Ini disebut dengan reaksi fusi. Melalui pengamatan spektroskopi, kita mengetahui bahwa Hidrogen dan Helium adalah dua unsur paling berlimpah di dalam bintang. Jadi, mungkinkah Matahari menghasilkan energinya melalui reaksi fusi?
Hidrogen adalah atom yang relatif stabil, oleh karena itu—tidak seperti atom berat yang meluruh—reaksi fusi tidak terjadi dengan sendirinya. Harus ada sebuah kondisi yang teramat ekstrem. Dalam kondisi tersebut, Hidrogen dapat melebur menjadi Helium. Kondisi ekstrem ini membutuhkan suhu dan tekanan yang teramat tinggi. Pada bagian pertama kita sudah mengetahui bahwa ada tekanan gravitasi yang besarnya semakin tinggi apabila kita semakin mendekati pusat bintang. Mungkinkah di pusat bintang, tekanan gravitasi dan suhunya luar biasa besar sehingga reaksi fusi dapat terjadi?
Diatas kita sudah mengandaikan Matahari berada dalam kesetimbangan antara tekanan gravitasi dengan tekanan radiasi, sebuah kesetimbangan yang kita sebut dengan kesetimbangan hidrostatik. Berbekal asumsi ini, kita dapat menghitung tekanan gravitasi yang terjadi di pusat matahari, yaitu 3.4 × 10^{11} atm atau kira-kira 340 milyar kali tekanan atmosfer kita! Bila kita andaikan bahwa gas di pusat matahari adalah gas ideal, maka hukum gas ideal memungkinkan kita menghitung suhu di “tungku” matahari apabila kita mengetahui berapa besar tekanan di pusat matahari. Suhu di “tungku” matahari dengan demikian kira-kira adalah 15 juta Kelvin!
Reaksi fusi yang sederhana terjadi dengan menggabungkan 4 atom Hidrogen menjadi 1 atom Helium

Suhu dan tekanan ini amat tinggi dan memungkinkan terjadinya reaksi fusi. Berapa energi yang dibebaskan oleh reaksi ini? Dari eksperimen, diketahui bahwa massa 1 atom Helium sedikit lebih ringan daripada massa 4 atom Hidrogen. Ada massa yang hilang sebanyak 0.7% massa 4 atom Hidrogen, artinya setiap 1 kg Hidrogen akan berubah menjadi 0.993 kg Helium, dan sisa massa yang hilang sebanyak 0.007 kg ini akan diubah menjadi energi. Berapa jumlah energi yang dibebaskan oleh 0.007 kg massa ini? Ketika Enstein meneliti efek-efek relativitas khusus, dia menemukan bahwa energi (E) dan massa (m) ternyata ekivalen dan dapat saling berubah melalui persamaan yang amat terkenal itu, E = mc^2, dengan c adalah kecepatan cahaya. Kecepatan cahaya adalah 300 000 km per detik (3 x 10^{8} meter per detik), sebuah kecepatan yang amat tinggi. Dengan demikian sejumlah kecil massa dapat diubah menjadi energi yang jumlahnya sangat besar, karena faktor konversi c^2 yang sangat besar. Melalui rumus Enstein yang amat terkenal ini, kita dapat menghitung bahwa reaksi 1 kg Hidrogen menjadi 0.993 kg Helium akan membebaskan massa sebesar 0.007 kg yang ekivalen dengan energi sebesar 0.007 x (3 x 10^8)^2 = 6.3 x 10^{14} Joule energi. Ini sebanding dengan energi yang dihasilkan oleh pembakaran 100 000 ton batubara!
Cukupkah energi sebesar ini untuk menghidupi Matahari? Kita mengetahui bahwa jumlah Hidrogen dalam Matahari kurang lebih adalah 75% dari total massa Matahari. Kita dapat menghitung, berapa jumlah energi yang akan dibebaskan andaikan 10% dari Hidrogen ini dilebur menjadi Helium:

Energi = 0.007 x 0.75 x 0.1 x (2 x 10^{30}) kg x (3 x 10^{8} m/s)^2 = 9.4 x 10^{43} Joule = 9.4 x 10^{50} Erg.

Sebuah energi yang luar biasa besar, hampir seribu kali lipat energi yang dibebaskan oleh pengerutan gravitasi! Berapa lamakah reaksi nuklir ini dapat menghidupi Matahari? Sebagaimana kita ketahui, energi yang dipancarkan Matahari adalah 3.8 x 10^26 Joule setiap detiknya. Ini artinya Matahari dapat bersinar sepanjang 7.5 Milyar tahun!
Angka ini cukup konsisten dengan apa yang kita ketahui. Diduga, Matahari dan tata surya kita terbentuk antara 4 hingga 5 milyar tahun lalu. Perhitungan modern yang lebih teliti menyimpulkan bahwa daerah di dalam Matahari yang cukup panas untuk dapat menghasilkan reaksi nuklir hanyalah daerah yang mencakup 10% dari total Hidrogen dalam Matahari, sebagaimana perhitungan kita di atas. Lebih lanjut, lama waktu pembakaran Hidrogen menjadi Helium ini adalah kira-kira 10 milyar tahun. Jadi, Matahari yang saat ini usianya 5 milyar tahun berada dalam usia paruh baya dan masih akan bersinar hingga 5 milyar tahun lagi.
Dengan demikian, pada bagian ini kita telah menyimpulkan bahwa Matahari menghasilkan energinya dari reaksi fusi. Reaksi fusi adalah reaksi yang menggabungkan atom kecil menjadi atom besar, dalam hal ini adalah peleburan 4 atom Hidrogen menjadi 1 atom Helium. Perhitungan kita atas tekanan dan suhu di bagian inti Matahari juga menyimpulkan bahwa tekanan dan suhu di bagian inti cukup panas dan padat untuk dapat memicu reaksi fusi.
Namun demikian, seperti apakah persisnya reaksi ini? Kondisi ekstrem yang dapat menghasilkan reaksi fusi sangat sulit diciptakan di Bumi. Membuat simulasi inti matahari dengan tekanan ratusan milyar kali tekanan atmosfer Bumi dan suhu 15 juta Kelvin amatlah sulit. Satu-satunya cara untuk meraba detail-detail reaksi nuklir di dalam “tungku” Matahari adalah dengan cara perhitungan teoretis, kemudian membandingkannya dengan apa yang kita amati pada permukaan Matahari.

Sumber : Tri_L.Astraatmadja@langitselatan.com

Postingan ini diambil dari rekan "IZRO'IL " dari situs blufame.com mengenai Kapal Perang Angkatan Laut AS Masa Depan (LCS, DD(X), CG(X)). Saya Ucapkan terimakasih guna menambah pengetahuan

Science & technology : UAVs

· 0 comments

Science & technology : Unmanned Aerial Vehicles (UAVs)

URL : http://scienctechnology-sg.blogspot.com/

(Lockheed Martin Littoral Combat Ship design concept)
Kendaraan Udara Tanpa Awak (Unmanned Aerial Vehicles=UAVs) adalah pesawat yang dikendalikan dengan remote atau “self-piloted” (mengendalikan diri sendiri) yang dapat membawa kamera, sensor, peralatan komunikasi atau peralatan lainnya. Mereka digunakan untuk peran pengintaian dan pengumpulan data intelejen sejak 1950an, dan peran lebih menantang juga diharapkan, termasuk misi pertempuran. Sejak 1964 Departemen Pertahanan AS telah mengembangkan 11 UAV berbeda, walaupun karena kesulitan pengembangan, hanya 3 yang akhirnya diproduksi. AL AS telah mempelajari kelayakan dari pengoperasian UAV versi VTOL (Vertical Take-Off and Landing) sejak awal 1960an, “QH-50 Gyrodyne torpedo-delivery drone” merupakan contoh awalnya. Akantetapi, tingginya biaya dan keterbatasan teknologi membuat sistem operasional UAV VTOL terhambat.
Pada awal 1990an DOD mencari UAV untuk memuaskan kebutuhan pengintaian pada kategori Jarak Sangat Dekat, Jarak Dekat atau Daya Tahan. Jarak Sangat Dekat didefinisikan sebagai 50km, Jarak Dekat didefinisikan dengan 200km dan Daya Tahan pada kondisi apapun. Pada akhir 1990, kategori Jarak Sangat Dekat dan Jarak Dekat dikombinasikan, dan kategori Kapal diumumkan. Untuk saat ini, pesawat ini di-kelas-kan pada kategori Daya Tahan dan UAV Taktis.
Pioneer: Dikeluarkan pada awal 1985 sebagai sebuah UAV interim, menghasilkan intelejen imagery untuk komando taktis di daratan dan mempunyai jarak jangkau hingga 185 km. Saat ini sudah tidak berada pada inventaris AD AS, telah dikembalikan ke AL AS pada 1995.
UAV Taktis: Didesain untuk mendukung komando taktis dengan “near-real-time imagery intelligence” yang mempunyai jarak jangkau 200km. Program Outrider Advanced Concept Technology Demonstration (ACTD) dihentikan. Solusi untuk bahan T-UAV (UAV Taktis) dicari melalui kompetisi yang dikontrak pada tahun 1999.
Joint Tactical UAV (Hunter): Dikembangkan untuk angkatan darat dan maritime dengan “near-real-time imagery intelligence” dan jarak jangkau 200km; dapat ditambah menjadi lebih dari 300km dengan menggunakan Hunter UAV lain sebagai relay udara.
Medium Altitude Endurance UAV (Predator): Advanced Concept Technology Demonstration sekarang bertransisi menjadi Low-Rate Initial Production (LRIP). Menghasilkan imagery intelligence untuk memuaskan Joint Task Force dan Theater Commanders sampai jarak 500 mil laut. Sekarang teknologi ini ditransfer ke AU AS.
High Altitude Endurance UAV (Global Hawk): dikeluarkan untuk misi yang membutuhkan long-range deployment and wide-area surveillance (EO/IR and SAR) atau sensor panjang yang mengintai area target. Teknologi ini dikembangkan oleh AU AS.
Tactical Control Station (TCS): TCS adalah software dan jaringan komunikasi yang dibutuhkan untuk mengontrol TUAV, MAE-UAV, dan UAV masa depan yang lain. TCS juga menghasilkan konektivitas dengan sistem C41.
Micro Unmanned Aerial Vehicles (MAV): Program DARPA untuk mengeksplor relevansi militer Micro Air Vehicles untuk operasi masa depan, dan untuk mengembangkan dan mendemonstrasikan teknologi yang dapat menerbangkan pesawat yang sangat kecil (Kurang dari 15cm/6inci pada semua dimensi).

Postingan ini diambil dajavascript:void(0)
Publish Postri rekan "jojo8228" dari situs blufame.com mengenai Kapal Perang Angkatan Laut AS Masa Depan (LCS, DD(X), CG(X)). Saya Ucapkan terimakasih guna menambah pengetahuan

Science & technology : Kapal Perang Angkatan Laut AS

· 1 comments

Science & technology : Kapal Perang Angkatan Laut AS

URL : http://scienctechnology-sg.blogspot.com/

(Lockheed Martin Littoral Combat Ship design concept)

Jajaran Angkatan Laut Amerika Serikat kini telah bersiap diri untuk menyongsong masuknya armada kapal perang baru dengan teknologi mutakhir. Program penyiapan kapal perang baru ini melibatkan berbagai industri terkemuka, baik di Amerika Serikat maupun dari daratan Eropa. Program yang disebut sebagai Littoral Combat Ship ini merupakan pengembangan kapal perang permukaan (Surface Combatants). Selain program ini juga berlangsung pengembangan kapal permukaan jenis Destroyer dengan kode DD(X), dan Cruiser dengan kode CG(X).

LITTORAL. Dalam suatu kesempatan (19 Mei 2005) redaksi militerium.com menanyakan kepada seorang Vice President dari Lockheed Martin Maritime Systems and Sensors division (MS2), apa sesungguhnya arti kata dari Littoral? Yang bersangkutan memberikan jawaban bahwa Ia sendiri yang terlibat langsung dalam perancangan program ini tidak mengetahui secara pasti dari arti Littoral tersebut adalah untuk menyatakan ‘lebih' dari sekedar ‘coastal waters' .

PERANCANGAN LCS. LCS dirancang untuk kenyamanan dari kebutuhan yang mendesak bagi shallow draft vessel untuk beropareasi samudera luas untuk menghadapi potensi ancaman yang timbul berupa ranjau perairan, kapal selam bermesin disel yang suaranya sangat pelan dan menghadapi kapal cepat bersenjata berukuran kecil.

Untuk mewujudkan program LCS ini, pada bulan Mei 2004 pihak Departemen Pertahanan Amerika Serikat telah mengumumkan pemilihan dua tim konraktor, satu tim dipimpin oleh Lockheed Martin, dan tim lainnya dipimpin oleh General Dynamics. Masing-masing akan menyerahkan system rancang-bangun dan pilihan untuk rancangan detil serta konstruksi untuk dua unit prototype yang disebut sebagai Flight O, atau generasi pertama kapal LCS.

Lockheed Martin memperoleh kontrak untuk pembuatan kapal pertama, LCS 1 pada bulan Desember 2004 dan pemotongan baja pertama dilakukan pada Februari 2005 bertempat di Marinette Marine Shipyard di Wisconsin dengan jadwal penyerahan pada tahun 2006 dan commissioning pada tahun 2007. Selain itu juga utuk pembuatan LCS 3 dengan jadwal commissioning tahun 2008. Sementara General Dynamics akan menerima pesanan pada tahun 2006 dan 2007 untuk membuat LCS 2 dan LCS 4, dengan jadwal commissioning pada tahun 2008 dan 2009.

Pesanan untuk sembilan unit LCS Flight 1 (Generasi ke-2) akan dilaksanakan dalam tahun 2008-2009 dengan jadwal commissioning pada tahun 2010 sampai 2012. Total kebutuhan LCS ini masih belum ditetapkan, tetapi diperhitungkan akan mencapai 56 sampai 60 unit LCS.

LCS dirancang untuk dapat mampu berlayar dengan kecepatan maksimum - sprint speed- melebihi 40 knot dengan jarak tempuh maksimum 1.500 mil laut, dan kecepatan ekonomis 20 knot dengan jarak tempuh (long-range transit distance) melebihi 4.000 mil laut. Rancangan Lockheed Martin adalah high-speed semi-planing monohul. Sedangkan rancangan General Dynamics adalah trimaran dengan slender stabilized monohul.

LCS yang mengakomodasi 75 orang awak dilengkapi dengan deck dan hangar pesawat helicopter dengan perhitungan operasional pesawat helicopter jenis MH-60R/S serta pesawat tanpa awak (UAV). Perancangan operasional pesawat helicopter dan UAV diperhitungkan untuk kondisi operasional diatas Sea State 5 (kecepatan angina diatas 27 knot dan rata-rata tinggi gelombang antara 6,4 kaki sampai 9,6 kaki). DD(X) juga akan mampu meluncurkan kapal cepat kecil (ukuran 40 kaki) dalam waktu 15 nebit untuk kondisi Sea State 4 (kecepatan angin mencapai 21 knot dan tinggi gelombang 5 kaki).

RANCANGAN TRIMARAN dari GENERAL DYNAMICS. Dikenal dengan sebutan slender stabilized teimaran monohul, memiliki ukuran panjang 127,8 meter, maksimum beam 28,4 meter dan bobot bermuatan penuh 2,637 ton.

Kapal dilengkapi dengan FLIR (Forward Looking Infrared) versi laut yang dipasang pada bagiann atas anjungan. Persenjataan yang dibawa antara lain meriam utama caliber 57mm dari Bofors, peluncur rudal RAM (Rolling Airframe Missile) yang dipasang diatas atap hangar pesawat, senapan caliber .50 (12,7mm) pada bagian lambung kapal. Perangkat decoy yang digunakan Super RBOCs (tiga unit) dan dua unit peluncur decoy Nulka. Perangkat Sonar yang digunakan berupa sonar tarik. Northrop Grumman Electronic Systems akan memasok peralatan system tempur (Integrated Combat Management System/ICMS), sementara BAE Systems Electronic Systems akan memasok perangkat radio komunikasi, dan CAE Marine Systems akan memasok perangkat kendali kapal berupa Automated Ship Control System. Pihak Ericson akan memasok perangkat radar jenis Sea Giraffe.

RANCANGAN SEMI-PLANING dari LOCKHEED MARTIN. Menggunakan dasar teknologi yang diperkenalkan oleh pabrik kapal Itali, Fincantieri pada kapal komersial Destrier (kapasitas 1.000 ton) yang pernah mencapai rekor kecepatan menyebrangi transatlantic, serta rancangan kapal kelas Jupiter (3.000 ton).

LCS rancangan Lockheed Martin ini akan menggunakan dua unit mesin gas turbine dari Rolls-Royce jenis MT30 36MW, dan dua mesin disel Isotta Fraschini. Dengan system konfigurasi COGAD (combination of Gas-Turbine and Diesel). Kecepatan maksimum diperkirakan akan mencapai 45 knot. Ukuran panjang kapal 115,5 meter, maksimum lebar beam 13,1 meter dan draft 3,7 meter.

Persenjataan yang akan digunakan oleh LCS 1 dan LCS 3 adalah meriam utama caliber 57mm dari United Defence jenis Mk-100. Kelengkapan lainnya berupa radar TRS-3D dari EADS yang beroperasi pada C-band.

KEKUATAN TIM. Tim Lockheed Martin dikomandoi oleh Lockheed Martin's Maritime Systems and Sensors Systems divison yang berkedudukan di Morestown, New Jersey dengan anggota tim yang terdiri dari Marinette Marine Shipyard, Bollinger Shipyards, Gibbs and Cox naval architects, Izar dari Spanyol dan Blohm & Voss naval Shipbuilders.

Kelompok General Dynamics dikomandoi oleh Bath Iron Works yang berkedudukan di Bath, Maine. Anggota tim terdiri dari Austal dari Mobile, Alabama (anak perusahaan Austal Ships of Australia), Boeing Company, BAE Systems, Rockville, Maritime Applied Physics Corporation, General Dynamics Electric Boat Division dan General Dynamics Canada.



Zumwalt-class destroyer (DDG-1000)
DD(X) Kapal Perusak USN Masa Depan

Kapal Perusak (Destroyer) modern bagi Angkatan Laut Amerika Serikat (USN) tengah dikembangkan sebagai kapal tempur permukaan masa depan. Sebagai kapal Destroyer multi-misi, pertama kali diperkenalkan oleh Departemen Pertahanan AS pada bulan November 2001 dengan sebutan Program DD21. Kini, program tersebut diberi kode DD(X) dan Northtrop Grummand telah terpilih agen perancang DD(X)

Pihak Northrop Grumman berencana akan menyelesaikan system rancang bangun DD(X) ini berikut 11 unit model pengembangan enjinering (EDM) pada tahun 2005 ini. EDM (Engineering Development Model) ini mencakup system persenjataan, system penggerak kapal, bahan komposit untuk deckhouse, system sonar serta system radar.

Pihak USN mengharapkan program DD(X) akan segera terlaksana dengan lancer dan pada tahun 2013 mereka sudah dapat mengoperasikan delapan sampai 12 unit DD(X). Program DD(X) ini sesungguhnya merupakan program pengganti dari program DD 21 Zumwalt yang arahnya membangun 32 unit kapal perusak baru sebagai pengganti kapal Frigate kelas Oliver Hazard Perry (FFG 7), dan destroyer kelas Spruance (DD 963). Tidak seperti biasanya kapal perang permukaan jenis Destroyer USN yang diperuntukan untuk menghadapi ancaman musuh di laut dalam, DD 21 memiliki misi utama untuk memberikan dukungan serangan kedarat bagi pasukan darat, juga melaksanakan fungsi tradisonalnya untuk misi anti serangan udara, anti kapal permukaan dan anti-kapal selam.

DD(X) akan memiliki hull dengan format yang disebut ‘tumblehome' dimana pada bagian depan kapal bentuknya tidak mengerucut keatas permukaan tetapi kerucut menghadap kearah permukaan air laut (terbalik dari bentuk tradisional). Bentuknya dirancang untuk memperkecil kemampuan deteksi radar lawan (termasuk deteksi infra merah).

Perangkat elektronik data-link (CDL/Common Data-Link) dirancang oleh pihak Harris Corporation yang beroperasi dengan X/Ku-band phased array antenna systems. Sistem antenna multi-beam yang digerakkan secara elektronik akan mampu menghubungkan jaringan sampai dengan delapan terminal CDL.

Menurut rancangannya, DD(X) ini akan memiliki bobot tempur mencapai 12,000 ton dengan kecepatan jelajah yang stabil pada 30 knot. Jumlah awak kapal termasuk awak yang mengoperasikan pesawat helicopter, total sebanyak 95 personil. (Bandingkan dengan Spruance class - 330 personil, dan Oliver Hazar Perry - 200 personil).

Perlengkapan Tempur

Persenjataan: Peluncur rudal vertical (PVLS/Peripheral Vertical Launch System) sebanyak empat sel berada pada parimeter deck. PVLS dikembangkan oleh pihak Raytrheon bersama United Defence dengan kode Mk 57 VLS.

Senjata misil Tactical Tomahawk (Penyempurnaan Tomahawk TLAM), Misil Standard SM-3 dan ESSM (Evolved SeaSparrow Missile) untuk pertahanan udara.

Meriam utama berupa dua pucuk meriam caliber 155mm yang memiliki jarak tembak efektif mencapai 100 mil laut dengan penembakan berkelanjutan untuk 12 butir peluru per-menit dikembangkan oleh pihak United Defence. Meriam ini dikenal dengan sebutan AGS (Advanced Gun System) - awalnya dirancang untuk program DD 21.

Sedangkan untuk pertempuran jarak pendek disediakan meriam caliber 57mm Mk 110 yang dikenal sebagai Ship Close-in Gun System, juga dikembangkan oleh United Defence. United Defence merupakan perusahaan yang mengakuisisi pabrik meriam kapal Swedia, BOFORS.

Radar pencari (VSR/Volume Search Radar) menggunakan system yang beroperasi pada L-band yang terintegrasi dengan radar multi-fungsi AN/SPY-3 dari Raytheon. Radar DD(X) akan mampu melakukan kegiatan surveillance dan tracking. AN/SPY-3 Multi-Function Radar (MFR) merupakan radar X-band active phased-array yang dirancang untuk mendeteksi rudal jelajah anti kapal jenis deteksi rendah, dan mendukung kendali penembakan rudal Standard.

Sonar digunakan untuk menghadapi target bawah air, pada DD(X) menggunakan sonar jenis bow array dan multi-fungsi towed-array yang mampu beroperasi dengan frequensi ganda (high and medium frequency).

DD(X) memiliki dua titik pendaratan pesawat helicopter.

Sistem Propulsi. DD(X) akan menerapkan system propulsi moderen, all-electric drive with an integrated power system (IPS) berdasar pada in-hull permanent magnet synchronous motors (PMM) dengan Advanced Induction Motors (AIM) sebagai backup.

IPS akan memasok tenaga kepada perangkat kapal lainnya seperti perangkat system tempur dan mampu merekonfigurasi kebutuhan pasokan tenaga. Untuk menghasilkan tenaga pada IPS ini dipercayakan kepada Genset gas turbin MT30 36MW dari Rolls-Royce.

CG(X) Kapal Penjelajah USN Masa Depan

CG(X) merupakan kelanjutan program DD(X). Hanya CG(X) merupakan jenis kapal penjelajah (Cruiser) yang tujuannya untuk menggantikan kapal penjelajah kelas Ticonderoga.

Pengembangan CG(X) ini kemudian tidak lepas dari pelaksanakan program DD(X), dimana menurut rencananya CG(X) akan menggunakan arsitektur propulsi dan rancangan hull yang sama dengan DD(X). Demikian juga dengan teknologi yang digunakan hamper keseluruhannya menyerupai DD(X). Dengan demikian jumlah awak yang akan mengoperasikan kapal penjelajah ini nantinya akan lebih sedikit dibandingkan dengan kapal sejenis yang beroperasi saat ini.

Ukuran keseluruhan dari CG(X) ini juga tidak berkisar jauh dari DD(X), namun hingga saat ini pihak redaksi masih belum memiliki data yang lengkap dari CG(X) ini, termasuk daftar kontraktor yang akan membangun kapal ini.

Postingan dari rekan "jojo8228" dari situs blufame.com mengenai Kapal Perang Angkatan Laut AS Masa Depan (LCS, DD(X), CG(X)). Saya Ucapkan terimakasih guna menambah pengetahuan

Science & technology : Prasasti kuno Mesir benteng militer

· 0 comments

Science & technology :
Prasasti kuno Mesir yang ditemukan di Tharu, benteng militer di utara Sinai
URL : http://scienctechnology-sg.blogspot.com/

Markas tentara Firaun, tepatnya tentara penjaga perbatasan timur laut mesir telah di temukan. Ynag di ketahui lebih selama 1.500 tahun.
Ini di temukan oleh para arkeolog mesir.
Tharu, itulah nama kota kecil berbenteng yang diyakini sebagai markas tentara kuno Firaun. Lokasi "tharu" berada di semenanjung Sinai, 3 KM di Timur laut kota Qantara, papar "MOhamed Abdel Maksoud" seorang arkeolog mesir.
Benteng itu menghubungkan lembah Nil dengan Levant, yang dimana saat itu masih di bawah kekuasaan Mesir.

penelitian ini dilakukan sejak 1986. Berhubung di temukannya prasasti inilah , sebagai acuan titik terang dari penelitian lokasi tersebut. Prasasti itu menyebut tiga Firaun - Tuthmosis II, yang berkuasa sekitar 1512 sebelum Masehi sekaligus pembangun instalasi militer sepanjang rute itu, Seti I dan Ramses II, yang memerintah Mesir tahun 1318 hingga 1237 sebelum Masehi.
Benteng tanah lempung

Markas tentara itu berisi reruntuhan tembok benteng yang terbuat dari batu lempung, berasal dari masa Ramses II seluas 500 meter kali 250 meter, dengan menara-menara setinggi empat meter.

"Penelitian awal terhadap situs itu menunjukkan bahwa benteng ini merupakan markas tentara Mesir dari masa Kerajaan Baru hingga masa Ptolemaic," kata Maksoud. Jaman Kerajaan Baru dimulai sekitar tahun 1570 sebelum Masehi dan periode Ptolemaic berakhir dengan kematian Cleopatra pada abad pertama sebelum Masehi.

"Bentuk-bentuk arkeologis benteng ini sesuai dengan tulisan di prasasti kuil kuno Mesir yang memperlihatkan bentuk kota Tharu, yang berada di permulaan jalur militer Horus," tambahnya.

Tulisan prasasti juga menyebut kuil Kerajaan Baru di utara sinai dan gudang di mana tentara Mesir kuno menyimpan makanan, senjata, tungku, cap, serta guci-guci tanah.

sumber : bluefame.com

daftar Blog asik

Friday, June 6, 2008 · 0 comments

NEWS
Berita Terkini
Catatan Tragedi Dunia
Gosip Selebritis
Daftar Tanaman Obat
Tentang Kesehatan

Hiburan
Download mp3
Lirik Musik
Video Lucu
Kumpulan Kata Mutiara

Pariwisata Bali
Hotel & Villa Bali
Age Bali
the balinese
Tari Pendet
g-land surf
Villa In Bali
Ngopi di Bali
Hotel List

Football Center
Berita Bola
Info Bola
Football Videos

Klasemen
Klasemen Liga Inggris
Klasemen Liga Italia
Klasemen Liga Indonesia
Klasemen Liga Jerman
Jadwal Liga
Jadwal Liga Italia
Jadwal Liga Spanyol
Jadwal Liga Inggris

Top Skor
Top Skor Liga Inggris
Top Skor Liga Spanyol
Top Skor Liga Italia
Pict Football
Live GOL

Moto GP
Moto GP Video
MOTO GP mania
Klasemen MotoGP
Jadwal Moto GP

IT & Teknologi
Virus Komputer
PHP & Mysql
FOREX
Laptop DELL
Dunia Teknologi
Info Laptop & PC
Info HP
HP Nokia
Network
LINUX
Network 1

Apple Evolution - Visual History of Apple Products, from the Apple IIe, iMac to the iPhone

Meteor

Meteor adalah penampakan jalur jatuhnya meteoroid ke atmosfer bumi, lazim disebut sebagai bintang jatuh. Penampakan tersebut disebabkan oleh panas yang dihasilkan oleh tekanan ram (bukan oleh gesekan, sebagaimana anggapan umum sebelum ini) pada saat meteoroid memasuki atmosfer. Meteor yang sangat terang, lebih terang daripada penampakan Planet Venus, dapat disebut sebagai bolide.

Jika suatu meteoroid tidak habis terbakar dalam perjalanannya di atmosfer dan mencapai permukaan bumi, benda yang dihasilkan disebut meteorit. Meteor yang menabrak bumi atau objek lain dapat membentuk impact crater.